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A hyperspin manifold SN constructed from N-component hyperspinors is an 
alternative to Riemannian manifolds R ~ for Kaluza-Klein-type theories of higher 
dimensions. Hyperspin manifolds possess a fundamental chronometric tensor 
with N n-valued indices, where always n = N 2. Some concepts of Riemannian 
geometry therefore have to be extended. A hyper-Christoffel formula is presented 
that expresses the connection in terms of the chronometric, assuming the 
chronometdc is covariantly constant and the connection is torsion-free. Thus, 
the chronometric can be used as sole dynamical variable. Extremals and self- 
parallel curves, which coincide in Riemannian manifolds, in general differ in 
hyperspin manifolds, but coincide again for nonnull curves. 

1. I N T R O D U C T I O N  

Spin  man i fo ld s  b a s e d  on Weyl  t w o - c o m p o n e n t  sp inors  are  i n t roduced  
by  Infe ld  and  van  de r  W a e r d e n  (1933), Taub  and  Givens  (1955), and  Penrose  
(1960) to descr ibe  f o u r - d i m e n s i o n a l  t ime-spaces .  H y p e r s p i n  man i fo lds  SN 
bui l t  f rom N - c o m p o n e n t  hype r sp ino r s  o f  S L ( N ,  C )  were sugges ted  by  
F inke l s t e in  (1986) to suppo r t  a K a l u z a - K l e i n  theory  o f  gauge  potent ia ls .  
A hype r sp in  m a n i f o l d  gives rise to a causa l  t ime-space  o f  d imens ion  n = N 2, 
which  possesses  a symmet r i c  ch ronomet r i c  form g . . . . . . .  with N n-va lued  
indices .  P rope r  t ime dT is given by  

d';N = gb,...b~ dtb . . . .  dt  bN = N det(  dt AA) (1) 

where  t AA are the  sesqu isp inors ,  N • N Hermi t i an  matr ices ,  o f  the spin  
man i fo ld ,  re la ted  to the  t ime-space  vectors  via the spin  vector,  a local  
i s o m o r p h i s m  (F inke l s te in  et al., 1986). 

The  geomet ry  o f  SN is no longer  R iemann ian .  In  this p a p e r  I p resen t  
a Chris toffel  fo rmula  for  n -d imens iona l  hype r sp in  man i fo lds  and  show that  
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there are two kinds of geodesics present, which are equivalent for special 
nonnull curves. 

2. HYPER-CHRISTOFFEL FORMULA 

In Einstein's gravitational theory, the fundamental chronometric form 
is covariantly constant (isometric) with respect to the vector connection: 
Dagbc = O. This leads to the well-known Christoffel formula in a holonomic 
or coordinate basis. 

In Riemannian geometry only the Christoffel formula permits us to 
use the chronometric as sole dynamical variable in the variation of  the 
Lagrangian. For the Hilbert action the Christoffel formula can be obtained 
via the Palatini (1919) method. This is not possible for higher derivative 
theories, however. A hyper-Christoffel formula therefore gives us the possi- 
bility of using the chronometric alone. This leads to simpler equations of 
motion. 

Under the assumption that the chronometric is also covariantly constant 
in hyperspin manifolds, the derivatives of the chronometric will determine 
the torsion-free, symmetric vector connection F, resulting in a hyper- 
Christoffel formula. 

Thus 

implies 

D a g b l . . . b  N = 0 

O agb,...bN -- F ~b, gsb2...bN . . . . .  F~abN gsb,...bN_ t = 0 (2) 

Define a hyper-Chris tof fe l  s y mbo l  o f  the f irs t  kind, symmetric in both sets of 
indices: 

F s  �9 gb2...bNs ,b, =" [ abl , b2 . . .bN ] (3) 

Assume a solution of the form 

[abe,  b 2 . . .  b N ] =  A(O,gb,...bN +Ob, gob2...bN)+ B(Ob2g...+ " " "+Ob,~g...) (4) 

This gives 

[ abl , b2 . . . bN ] = N - -  l ( O agbt...bN "]- Oblgab2...b~. ) 

- [ N ( N - 1 ) ] - ~ ( O ~ g . . .  + ' "  "+ObNg...) (5) 

Using the dual  chronometric,  defined by 

gbV"bNsg,b2...bN = 6~ (6) 

one obtains the hyper-Chris tof fe l  symbols  o f  the second k ind:  

r '  = gb2""bN'[abl b2 bN] (7) a b  I , �9 , . 
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The solution is necessarily unique, because (2) forms N4(N2+ 
1 ) ' . .  ( N Z + N - 1 ) / N !  equations for only N 4 ( N 2 +  1)/2 F's. Only in the 
case N = 2 is the number  of  equations equal to the number  of  F's. Otherwise, 
the Christoffel symbols are overdetermined by (2). In the case N = 2, (5) 
and (7) of  course reduce to Christoffel's familiar formula. 

3. G E O D E S I C S  

I call a parametrized curve ta(h)  a self-parallel curve if its tangent 
vector v := dta /dh  is parallel-transported along itself: 

raDar b = 0  (8) 

I call a curve extremal if its proper  time dz is an extremum, i.e., 

6 f d z =  f ,d ta /dh , l /N dh =O (9) 

I call a curve geodesic if  it is both extremal and self-parallel. 
To simplify the calculation of (9), the variation is applied only to d'r N, 

which is permissible for a nonnull arc-length parameter,  and carried out in 
a geodesic coordinate system where the F's are all zero. Using the isometry 
of  g also, one obtains 

gb2...bNsV b . . . .  vbN-'vaDav b~ = 0 (10) 

One sees immediately that the self-parallel equation is a sufficient 
condition for the extremal one. Whether it is also a necessary one depends 
on the invertibility of  the reduced chronometric gb2...b~sV b2 �9 �9 �9 V b~-', which 
is a second-rank tensor. 

A chart is called determinantal if in it the spin map from the space of 
sesquispinors to the tangent bundle of  t ime-space is a simple delta function. 
In such a chart the invertibility can be proven for special cases. The 
chronometric is then given by 

g ....... = eAB...NeAB...N/(N -- 1)! (1 1) 

where the N indices A, B, . . . .  N range from 1 , . . . ,  N. 
From (1) one sees that the determinant of  a nonnull vector is nonzero. 

It can be diagonalized by an S L ( N ,  C)  t ransformation to a unique sequence 
(up to order) of  ~:1 (normal form). A future timelike vector has ~)AA a s  

its normal form. 

Lemma.  For future-timelike vectors, the reduced chronometric is 
invertible. 
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Proof. Write eAB,..NEAB...N in its delta-function representation, 

eAB...NeAB...I~ = det /  : (12) 

L 6NA . . . . . . . . .  tSNt~ 

By (11) the reduced chronometric then has the form 

EAB...NEAB...I~r . . .  ~N1Q 

which is proportional to ~Aa~SBa -- ~Aa~Ba- Acting upon any nonzero matrix, 
the resulting matrix is always nonzero. �9 

The normal form of  spacelike vectors is a mixed sequence of :F1. The 
spacelike vectors therefore cannot be represented by a simple delta function, 
which makes the computations by use of  (12) rather lengthy. The calculations 
done up to N = 4 show the same result as before and it seems likely that 
the reduced chronometric is invertible for any nonnull vector. This suggests 
that extremal and self-parallel curves are equivalent for nonnull curves in 
hyperspin manifolds as well as in Riemannian manifolds. 

For a nullvector, i.e., a sesquispinor having at least one zero eigenvalue, 
one can show by using (12) that the reduced chronometric is not invertible. 
Hence, there exist extremal curves that are not self-parallel. These curves 
might be important motions for free particles or fields. 

4. RESULTS 

In isometric, torsion-free hyperspin manifolds the connection can be 
uniquely expressed in terms of derivatives of  the chronometric. This leaves 
the chronometric as the single dynamical variable and source of gauge 
fields. Geodesics are defined in hyperspin manifolds analogously to Rieman- 
nian manifolds. All self-parallel curves and all nonnull extremals are 
geodesics, but only special null extremals are. 
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